易汽化介质中密封端面间液膜压力是怎样分布的?
易汽化介质如液态烃等类介质的机械密封一直是石化行业中较难解决的问题,其原因是膜压系数不稳定,弄清楚缝隙中压力分布和正确计算膜压系数是有必要的。众所周知,am109-80机械密封,在轻烃类介质的密封缝隙中存在汽液两相。外半径r2到r之间为液相,膜压分布呈线性,从到内半径r为汽相,呈抛物线状分布。也就是说在r处出现汽化,因此称r为汽化半径(也叫沸腾半径)。
AM109-80机械密封
QM104-17机械密封
AM104-17机械密封
104-45机械密封
M3N-35机械密封
120-95机械密封
CVL15-1机械密封
SBI5-10机械密封
FLG100-315机械密封
DFG65-250机械密封
DFW40-100机械密封
DL3-130机械密封
DL5-40机械密封
DFW50-200B机械密封
为什么要计算端面比压?
合适的端面比压是保证机械密封长周期安全运行的重要因素。端面比压要大于密封端面间的液膜压力,使端面良好地贴合,避免工作中密封面开启,保证密封工作的稳定性但比压也不可过大,以防止产生大量的热,破坏密封面间液膜,磨损加剧,功率消耗增大。
端面比压的计算与密封结构有关,不同的结构计算方法不同,允许的端面比压也各异。需要指出的是端面比压是单位面积所承担载荷的平均值,am109-55机械密封,并非压力分布状况。
AM108-19机械密封
QM104-35机械密封
AM104-35机械密封
202-22机械密封
M3N-65机械密封
1527-40机械密封
CVL15-3机械密封
SBN10-12机械密封
DWB250/07机械密封
dfl18-15*7机械密封
DFW65-250机械密封
DL3-20机械密封
DL64-20机械密封
DFW65-125(I)机械密封
在使用现场对机械密封进行哪些计算?
在使用现场,只有实际、具体的机械密封,它的设计参数和使用条件是没有的。制造厂仅提供一个使用范围,有的连使用范围都没有。因此,am109-60机械密封,需要对机械密封结合具体的使用条件进行核算。
首先,要检查机械密封各零件的材料是否适应工作条件的要求。例如各零件的耐腐蚀性,曲靖机械密封,密封端面和辅助密封圈的材料是否合适等,在此基础上オ有核算的必要。然后检査各部尺寸,尤其是密封端面的内外径和轴套的直径;计算密封端面的平均速度;计算载荷系数;实际测量弹簧的弹性力并计算弹簧比压;计算端面比压等。
AM109-55机械密封
QM155-40机械密封
AM155-40机械密封
104-22机械密封
M3N-22机械密封
120-70机械密封
CVL1-30机械密封
SBI45-11机械密封
FLG100-200C机械密封
DFG40-250机械密封
dfw300-250机械密封
DL2-80机械密封
DL5-240机械密封
DFW50-160(I)机械密封